Ecophysiology of different filamentous Alphaproteobacteria in industrial wastewater treatment plants.
نویسندگان
چکیده
The ecophysiology of five filamentous species affiliated to the Alphaproteobacteria was investigated in industrial activated sludge systems. The five species, 'Candidatus Alysiosphaera europaea', 'Candidatus Monilibacter batavus', 'Candidatus Alysiomicrobium bavaricum', 'Candidatus Sphaeronema italicum' and Meganema perideroedes, are very abundant in industrial wastewater treatment plants and are often involved in bulking incidents. The morphology of these filamentous bacterial species resembled Eikelboom's Nostocoida limicola, or Type 021N, and could only be correctly identified by using fluorescence in situ hybridization (FISH), applying species-specific gene probes. Two physiological groupings of the five species were found using microautoradiography combined with FISH. Group 1 ('Ca. Monilibacter batavus' and 'Ca. Sphaeronema italicum') utilized many short-chained fatty acids (acetate, pyruvate and propionate), whereas Group 2 ('Ca. Alysiosphaera europaea', 'Ca. Alysiomicrobium bavaricum' and Meganema perideroedes) could also exploit several sugars, amino acids and ethanol. All species had polyhydroxyalkanoate granules present and several of the species had a very large storage capacity. No activity was found under strict anaerobic conditions, while uptake of substrate was observed in the presence of nitrate or nitrite as potential electron acceptor. However, for all species a reduced number of substrates could be consumed under these conditions compared to aerobic conditions. Only a little exo-enzymic activity was found and nearly all species had a hydrophobic cell surface. Based on knowledge of the ecophysiological potential, control strategies are suggested.
منابع مشابه
Ecophysiology of the filamentous Alphaproteobacterium Meganema perideroedes in activated sludge.
A comprehensive study of the ecophysiology of the filamentous Meganema perideroedes affiliated to the Alphaproteobacteria, possessing a "Nostocoida limicola Type II" filamentous morphology was conducted. This morphotype often causes serious bulking problems in activated sludge wastewater treatment plants, and hardly anything is known about its physiology. The study was carried out by applying a...
متن کاملIdentification and ecophysiological characterization of epiphytic protein-hydrolyzing saprospiraceae ("Candidatus Epiflobacter" spp.) in activated sludge.
The identity and ecophysiology of a group of uncultured protein-hydrolyzing epiphytic rods attached to filamentous bacteria in activated sludge from nutrient removal plants were investigated by using the full-cycle rRNA approach combined with microautoradiography and histochemical staining. The epiphytic group consists of three closely related clusters, each containing 11 to 16 clones. The clos...
متن کاملMeganema perideroedes gen. nov., sp. nov., a filamentous alphaproteobacterium from activated sludge.
An industrial wastewater treatment plant at Grindsted, Denmark, has suffered from bulking problems for several years caused by filamentous bacteria. Five strains were isolated from the sludge by micromanipulation. Phylogenetic analysis of the 16S rRNA gene sequences showed that the strains formed a monophyletic cluster in the Alphaproteobacteria, and they were phenotypically different from thei...
متن کاملEcophysiology of abundant denitrifying bacteria in activated sludge.
The abundance of potential denitrifiers in full-scale wastewater treatment plants with biological nitrogen and phosphorus removal was investigated by FISH and various oligonucleotide probes. The potential denitrifiers were characterized as probe-defined populations that were able to consume radiolabelled substrate with oxygen, nitrate and nitrite as electron acceptor as determined by microautor...
متن کاملElectrical Energy Management in Industrial Wastewater Treatment Plant
In this study, the energy consumption of Nasirabad Industrial Park (NIP) treatment plant was evaluated. A combination of up-flow anaerobic baffled reactor (UABR) and aerobic integrated fixed-bed activated sludge (IFAS) processes were employed in NIP. To find out the average electrical energy use per m3 influent wastewater, the rate of energy usage of the plant was calculated by data ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbiology
دوره 152 Pt 10 شماره
صفحات -
تاریخ انتشار 2006